Browsing by Author "Morais, Sara"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Biomechanics, energetics and coordination during extreme swimming intensity: effect of performance levelPublication . Ribeiro, João; Figueiredo, Pedro; Morais, Sara; Alves, Francisco; Toussaint, Huub; Vilas-Boas, João Paulo; Fernandes, Ricardo JorgeThe present study aimed to examine how high- and low-speed swimmers organise biomechanical, energetic and coordinative factors throughout extreme intensity swim. Sixteen swimmers (eight high- and eight low-speed) performed, in free condition, 100-m front crawl at maximal intensity and 25, 50 and 75-m bouts (at same pace as the previous 100-m), and 100-m maximal front crawl on the measuring active drag system (MAD-system). A 3D dual-media optoelectronic system was used to assess speed, stroke frequency, stroke length, propelling efficiency and index of coordination (IdC), with power assessed by MAD-system and energy cost by quantifying oxygen consumption plus blood lactate. Both groups presented a similar profile in speed, power output, stroke frequency, stroke length, propelling efficiency and energy cost along the effort, while a distinct coordination profile was observed (F(3, 42) = 3.59, P = 0.04). Speed, power, stroke frequency and propelling efficiency (not significant, only a tendency) were higher in high-speed swimmers, while stroke length and energy cost were similar between groups. Performing at extreme intensity led better level swimmers to achieve superior speed due to higher power and propelling efficiency, with consequent ability to swim at higher stroke frequencies. This imposes specific constraints, resulting in a distinct IdC magnitude and profile between groups.
- Task Constraints and Coordination Flexibility in Young SwimmersPublication . Silva, Ana F.; Figueiredo, Pedro; Morais, Sara; Vilas-Boas, João P.; Fernandes, Ricardo J.; Seifert, LudovicThis study aimed to examine young swimmers' behavioral flexibility when facing different task constraints, such as swimming speed and stroke frequency. Eighteen (five boys and 13 girls) 13- to 15-year-old swimmers performed a 15 × 50-m front crawl with five trials, at 100%, 90%, and 70% each of their 50 m maximal swimming speed and randomly at 90%, 95%, 100%, 105%, and 110% of their preferred stroke frequency. Seven aerial and six underwater cameras were used to assess kinematics (one cycle), with upper-limb coordination computed through a continuous relative phase and index of coordination. A cluster analysis identified six patterns of coordination used by swimmers when facing various speed and stroke frequency constraints. The patterns' nature and the way the swimmers shifted between them are more important than getting the highest number of patterns (range of repertoire), that is, a change in the motor pattern in order to adapt correctly is more important than being able to execute a great number of patterns.